
WoTSF: A Framework for Searching in the Web of Things
Mina Younan

Faculty of Computers and
Information

Minia University
El-Minia, Egypt

mina.younan@mu.edu.eg

Sherif Khattab
Faculty of Computers and

Information
Cairo University

Giza, Egypt
s.khattab@fci-cu.edu.eg

Reem Bahgat
Faculty of Computers and

Information
Cairo University

Giza, Egypt
r.bahgat@fci-cu.edu.eg

ABSTRACT

A key challenge in the emerging Web of Things
(WoT) paradigm is how the human users and
machines look for meaningful and readable
information in huge and dynamic datasets in real-
time, whereby the datasets are presented in different
formats. This paper presents a technique to construct
efficient, hierarchical web indices that are efficiently
kept up-to-date. Also, a framework for searching in
the WoT, namely WoTSF, is proposed and
experimentally evaluated using a prototype. The
proposed framework was shown to present a tradeoff
between search speed and result accuracy as
compared to the Dyser WoT search engine.

CCS Concepts

• Information systems~Web indexing

• Computer systems organization~Sensor networks

Keywords

Internet of Things (IoT); Web of Things (WoT); Web Search;
Web Indexing.

1. INTRODUCTION
Augmenting everyday objects (e.g., light bulbs, curtains, and

appliances) with embedded computers or visual markers
allows things and information about them to be accessible
digitally (i.e., through the Web or mobile phones). The augmented
objects become internet's interface to the physical world [1] [2]
[3]. In the Internet of Things (IoT), sensors and actuators that are
connected to smart things (SThs) monitor and control their
surrounding environment. They produce raw data about changes
in states and events in the environment.

The Web of things (WoT) [4] uses existing web tools to
present IoT data in high-level states as final conclusions about
objects and events. That is, WoT integrates sensors and actuators
not only to the internet (network layer) but also to the web
(application layer) to provide users with an easy interface to

present information about physical objects in a readable form [5].
Searching for SThs and Entities of Interest (EoIs) is an essential
service for almost all of the WoT applications [6] [7] [8] [9] [10]
because users of the WoT are more interested in high-level states
especially about EoIs [3]. WoT search engines, such as Dyser [3]
[11], crawl SThs and EoIs pages and build an index of all possible
states and probabilities of those states in order to answer queries.

The current trend in searching for SThs and EoIs in the WoT
is to build loosely coupled systems [12], so that anyone can
rebuild his own search engine for his own network [3]. But still,
there is no general search engine for the IoT and the WoT [13]
[14]. Many challenges face the WoT searching service in general
[1] [7] [15] [13]. Whereas a huge number of heterogeneous
connected devices, there is no standardized naming for SThs’
attributes during the device registration process. Moreover, SThs
have dynamic information, such as readings and locations of
movable objects on which sensors and actuators are attached.
Even some of the static STh information (e.g., logical path) is not
considered as STh attributes although they are needed in the
search process. For example, the Dyser WoT search engine [3] [8]
needs to answers queries such as “find rooms at building X,

occupancy:empty”. Because WoT pages host dynamic parts (i.e.,
pages parts are coded using AJAX), some search crawlers cannot
crawl them [16]. Finally, STh state naming is not standardized.

The main contribution of this paper is a technique to build a
compact and accurate index and to efficiently keep it up-to-date.
Many WoT networks contain similar types of sensors; for example,
smart buildings that have an occupancy sensor in each room. Using
a master index that indexes only the existence of an empty room in
the building instead of indexing each sensor value reduces the index
size and directs the fine-grained room search only into buildings
that have empty rooms with high probability.

This paper also presents a framework for searching in the
WoT (called WoTSF) that addresses the challenges mentioned
above. WoTSF builds high-level indices for each STh and EoI
type in all WoT networks using a certain aggregation function (e.g.,
count or maximum). The master indices are created from local
indices of distributed local search engines. A prototype of WoTSF
was implemented and evaluated in comparison to Dyser [3] using
three assessment criteria: index size, processing time and the
accuracy of the results.

The remainder of the paper is organized as follows. In
Section 2, related work of search engines in the IoT and the WoT
is presented. Section 3 describes the proposed WoTSF
architecture. In Section 4, the implementation of WoTSF is
described followed by experimental evaluation. Finally,
conclusions and future work are presented in Section 6.

2. RELATED WORK
In this section, we spotlight the gap between current WoT

search engines and the requirements of WoT search.

SAMPLE: Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’10, Month 1–2, 2010, City, State, Country.
Copyright 2010 ACM 1-58113-000-0/00/0010 …$15.00.

DOI: http://dx.doi.org/10.1145/12345.67890

2.1 Real-time web search engines
A web search engine, like Google, is an application for

retrieving relevant information to a user query from the domain of
the World Wide Web (WWW) [14]. It matches the user query with
static content of web pages that are crawled and indexed in a
distributed database. Indexing keywords of the crawled web pages
is an essential component of the web search. Result ranking depends
on keywords matching score. In general, web search engines are
document centric.

Search engines of social networks, like Twitter and Facebook,
are server centric. They update states of their users providing real-
time search for messages, comments and reviews, where users can
search for messages, comments, etc., using keywords, and results
are returned in real-time. Updates in user states are visible in real-
time to all users [3].

2.2 IoT and WoT search engines
Searching the WoT is a special type of web search and

network search [14]. Like web search, WoT search uses the static
parts of the user query (e.g., find sensor of model X). Like network
search, WoT search matches search queries against a dynamic
information space.

Dyser [3] [11] is a content-based search engine for the WoT. It
works in a similar way to traditional search engines (e.g., Google),
whereby the index of Dyser is built upon keywords, and users use
simple and structured query language to search for entities. Dyser
can search for SThs and EoIs in real-time. In Dyser, queries about
states of SThs and EoIs are answered at the time of the query.
Dyser does not index historical data; it indexes page keywords
(static and quasi-dynamic information) and prediction models in
order to predict future states of SThs and EoIs. Dyser searches for
entities in two steps. First, it searches on Google for entity pages
using a magic string. Second, it searches in its internal indices for
entities that match static part of the query (i.e., the keywords). Like
Dyser, we propose the WoTSF that contacts local WoT Search
Engines (WoTSEs) that can answer specific parts of the query (sub-
queries), and then merges the results to be returned as a ranked list.

Shodan [17] indexes website HTTP and FTP banners of
devices (e.g., desktops, routers, and IP cameras) connected to the
internet. It helps users to find a specific device has a specific content
in its banner. For example, ‘Server: SQ-WEBCAM’ searches for a
web cam. Shodan is a keyword based search engine. It searches for
devices not EoIs.

SenseWeb [18] is a spatial search engine in the WoT for
retrieving last-seen locations of SThs. Thingful [19] is a search
engine for finding devices, datasets and real-time data sources by
geo-location across many IoT networks. It has a unique
geographical index of connected objects. Its query is split in two
parts, what and where, to filter and speed up the search process.

2.3 Searching in the WoT
Christophe et al. [8] discuss searching in the WoT focusing on

two points: (1) requester (machine or user), to select the best search
algorithm, and (2) type of results (e.g., searching for a similar object
or getting certain decision depending on the states of different
objects) benefiting from the semantic web. Implementing semantic
web solves problems of non-standardized naming. Two scenarios
are discussed for searching in private and public WoT, which
stimulate the need for a general search engine for the WoT.

Mayer et al. [20] present DiscoWoT, an extensible discovery
service for solving the problem of using multiple formats in WoT
applications. The discovery service is based on multiple discovery

strategies. Using this service, clients semantically identify SThs
using their URL. This service could be implemented with the
crawler of the WoT search engine.

Mayer et al. [7] propose a web-based infrastructure for the
WoT in order to facilitate the integration of SThs and interaction of
human users and other SThs (i.e., a look-up service). They identify
four types of queries to search for SThs resources; in the case of
dynamic integration of SThs, implementing ‘Request For Query

(RFQ)’ enhances the search result.
Zhang et al. [21] present a framework for a distributed range-

query search, which consists of three modules: (1) reporter, (2)
indexer, and (3) query executor. The framework handles queries
such as searching for sensors that read values in a range. Sensors
send only abnormal readings to reduce the frequencies of data
migration, and consequently reducing the frequency of updating the
index of ranges. They focus on speeding up search for the special
range queries, regardless if the search is implemented internally in a
specific network or as a global search engine. The range-query
framework proposed in [21] reduces the index size by reducing data
migration between SThs. This query type is considered by our
proposed WoTSF.

Truong et al. [6] [22] propose to search for sensor similarity
and sensor content in the WoT. The sensor has three types of
information: (1) static (e.g. sensor type), (2) quasi-dynamic (e.g.,
location), and (3) dynamic (e.g., measurement value). Similarity
depends on STh types and historical data. But content-based search
is another type of sensor queries for finding sensors whose values
fall in a certain value range (similar to [21]).

A case study for crawling the WoT has been discussed [23],
whereby the search engine spiders crawl RESTful services [24]
instead of dynamic parts (i.e., parts coded with AJAX) in STh
pages following Google recommended optimizations [25]. The
WoTSF uses datasets generated by the testbed in [1] for building
local indices for individual WoTSEs, which are built based on the
Dyser search engine [3]. Crawling WoT systems for building
general indices is done similar to Google search engine, whereby
WoT homepages host a server-root file to direct search engine
spiders [25]. The WoTSF indexes and downloads this file
containing the required information about the WoT.

To sum up, most of above mentioned search systems support a
keyword-based search, which will be difficult due to the challenges
of WoT search. None of them discussed issues related to crawling
and indexing data from different WoT networks. Using semantic
web for enhancing search results is out of the scope of this paper but
will be addressed in the future.

3. THE WOTSF ARCHITECTURE
Searching for high-level states is desirable for human users

more than searching for raw sensory data [6]. Indeed, sensory data
are huge and have a very short life-span [13] as sensors monitor
daily life events. Users are interested in current states based on the
sensory data. Because IoT and WoT systems are dynamic and
real-time, the time that a search query takes before it returns the
response to the user may be more than the time between state
changes, leaving the query response stale and inaccurate. The
solution in this case is to speed up the search process by filtering
queries using prediction models and keeping indices up-to-date by
building distributed high-level indices for different types of
queries. In what follows, we present motivating scenario and
describe the architecture of the proposed WoT search framework,
which aims at speeding up the search process.

3.1 Motivating scenario
Suppose that, there are three WoT networks that monitor

three different smart hotels, where each WoT network has its own
search engine. The first WoT network uses micro-format
embedded in the EoIs pages, the second uses microdata, and the
third implements AJAX for updating its pages in real-time, storing
its data in RDF files. A user wants to search for a quiet and sun-lit
room in the three hotels. The user searches each individual search
engine and ranks the results. According to this scenario, there is a
need to build a general search engine for the three systems, so that
the user searches this global search engines instead of searching
each local engine.

3.2 Query processing
The architecture of the WoTSF is shown in Figure 1. The

main elements of the architecture are a global search engine
(WoTSF) and one or more individual local search engines
(WoTSEs). In this figure, m represents the index of a local search
engine and s represents data storage in the WoT. The WoTSF
crawls server-root files of the WoT networks and indexes general
information about the WoT networks, such as URL of WoTSEs’
APIs, list of sensor types and all possible states, and high-level
dynamic information using a certain aggregation function (e.g.,
average). WoTSF works as a middle-layer between the user and
the WoTSEs, whereby each WoTSE works on its local indices
that relate to a specific WoT network. When WoTSF receives a
query, it analyzes it generating a list of sub-queries to be pushed
into a filtered list of WoTSEs’ APIs, such as shown in Figure 2
(a). Each individual WoTSE builds multiple-indicies (Figure 2
(b,c)) to serve different queries quickly connecting them to
SThs/EoIs datasets, such as shown in Figure 2 (d). Search results
are ranked then returned to the query initiator (WoTSF user).

3.3 Two-level index structure
Building general indices for a massively increasing number

of sensors requires the indices to be updated at a potentially very
high rate. Distributing the indices, whereby each WoTSE handles
its own indices, reduces the frequencies of updates in the higher-
level indices. The hierarchical structure of indices is shown in
Figure 3. The individual WoTSEs are located in WoT networks

where datasets of sensors are located. For each STh the WoTSE

gets the aggregation or summary of its readings for each unit of

time (e.g., day, hour); the same thing is done for each EoI using
previously calculated summaries of its SThs. The WoTSF
calculates the aggregation for each building per EoI state. The
WoTSF builds high-level indices about all WoT networks, called
master indices or WoT-level indices, such as shown in Figure 1
and Figure 2 (a). In smart buildings domain, master indices could
be called building-level indices. Individual WoTSEs execute sub-
queries on their local indices, which are called secondary indices
or STh-level indices.

The idea of building high-level indices using aggregation
functions on EoI states has the following benefits: (1) distributed
queries and distributed indices [26], (2) up-to-date indices, and (3)
scalability to different WoT systems. As a result of benefits 1 and 2,
WoTSF makes a balance between search speed and accuracy of

results. Search speed produces results in less time (i.e., saving in
network overhead) by getting results from master indices only.
Result accuracy depends on updates from the individual indices.
However, the two-level index produces additional delay due to
network overhead but saves time in crawling, parsing, and indexing.
Instead of re-indexing the whole WoT, each local WoTSE re-
indexes only the new data either by applying the pull method (in the
case of periodic index updates) or using the push method [1] [3]
[23] (whereby sensors send only abnormal changes keeping top-k
values up-to-date [21]. Keeping WoTSE indices using the pull
approach decreases the complexity of data indexing and increases
data accuracy [3]. Updating data will be for a few number of
devices that sense changes in their states.

Figure 1. The architecture and query life-cycle in the proposed

WoT Search Framework (WoTSF).

Figure 2. Index structure and query processing in the WoTSF.

Two levels of indices are used: master indices and SThs-level

indices.

Figure 3. Hierarchical structure of WoTSF and WoTSE indices

To sum up, the proposed two-level index structure makes a
balance between data analysis in the search process and data
migration and communication in the indexing process [21] [26].

4. WOTSF IMPLEMENTATION
A prototype of the WoTSF framework was implemented

using C# and Web Services Applications (WCF) for
communication between components. The main processes of the
search engine are: crawling, indexing, searching, and ranking. The
implementation of these components is described in the following
subsections.

4.1 Crawling
A flowchart of the sensor process life-cycle is shown in

Figure 4 (a), where the sensor sends only abnormal readings to be
indexed by its gateway (push method). Historical data are stored in
a local database (datasets in Figure 2 (d)), where the database
servers serve queries consisting of aggregation functions (e.g.,
average and count). The flowchart for handling an incoming
message from a sensor holding abnormal data is shown in Figure 4
(b). The gateway listens to its sensors and updates EoI states
according to sensor values. If the number of records of the latest
sensor values is greater than a threshold, the oldest value is replaced
by the newest one; otherwise the gateway adds the sensor value to
the list. Updating EoI prediction model depends on a number of
consecutive state changes. Extracting the prediction model type
(e.g., Single Period Prediction Model (SPPM) [3]) from the
sensors’ historical readings is out of this paper’s scope.

4.2 Indexing
The WoTSF prototype produces indices like Dyser [3], a set of

quadruple prediction records for each sensor in the time unit (e.g.,
7-Days). Because this prototype works on a dataset generated by
the testbed in [23], sensors may produce different values (readings)
or change their states frequently in less than a minute (i.e., each
sensor has more than one reading in the same time unit (e.g., a
day)). For simplicity, we use the kth percentile (e.g., 50th
percentile) for representing each sensor by a single value in the
time unit. Resulting values were then used for generating
prediction models in that time unit. For example, on Sunday a
temperature sensor reads a set of values {5, 20, 21, 20, 20, 21, 23,
20, 21, 23}, Suppose that the temperature sensor has three
possible states ‘cold’, ‘warm’, and ‘hot’, following the rules {if
(value≤18) then ‘cold', and if (18<value≤27) then ‘warm’, else
‘hot’}. Using the 50th percentile, the sensor could be represented
by the value 20, thus the temperature sensor on Sunday could be
represented by the state ‘warm’ with probability ‘50%’.

Like what is done with Dyser [3], we suppose that gateways
(base-stations) in each WoT network generate prediction models
from the historical data of their SThs and EoIs. Then, the search
engine spider expands those models according to their periods. A
general index similar to Dyser index (DSE index) for all WoT
networks is shown in Figure 5 (a). On top of these quadruple
prediction records, high-level indices are generated, such as shown
in Figure 5 (b). An aggregation function is used for making a
conclusion about a certain type of EoI states, for example the
probability of having an empty room in a certain smart building. In
this implementation, the WoTSF prototype generates a general
index for SThs of type ‘occupancy’ in WoT networks, where each
WoT network has a number of SThs. WoTSF uses the aggregation
function ‘maximum’ to index information about probability of
having an empty room in each WoT network according to the
prediction model type (7-Days). When multiple EoIs in one
building have the same aggregated value on one day, multiple
records for the building are stored as shown in Figure 5 (b);
otherwise, zero or one record is stored per day for each building.

4.3 Searching
WoTSF supports two modes for searching. In the case of speed

search (searching in high-level indices), the WoTSF looks up its
indices and ranks EoIs by their probabilities. But, in the case of
accurate results, the WoTSF performs a deep search using
WoTSEs’ APIs then ranks results according to sensor probabilities.
The WoTSF filters buildings using the static part of the query
(i.e., type of buildings and location) selecting the appropriate
indices, then searches for the dynamic part. However, the search
in WoTSF and in Dyser are different.

For example, using Dyser, when the user selects a search
criteria and probability>=50%, Dyser searches locally in its

Figure 4. Flow charts for sensor and gateway process life-

cycle. (a) Sensor periodically sends changes in its readings to

its gateway (b) gateway listens to its sensors and builds their

prediction models.

Figure 5. Search analysis: (a) searching on Dyser index (b) searching on Building-Level index (WoTSF) (c) WoTSF runs on

Building-Level index and recursively calls appropriate WoTSEs’ APIs returning a ranked list of results.

master index and returns a ranked list of direct STh URLs, which
have probability >=50%, such as shown in Figure 5 (a). For
WoTSF, the search process depends on the level of search,
Building-level or STh-level. When the user sends the same query
on Building-level, WoTSF first selects appropriate indices
according to the static part of the query, then the WoTSF searches
for buildings that score higher probabilities, and finally returns a
list of results containing a variety of buildings, such as shown in
Figure 5 (b). In other words, if a single building has more than
one empty room, the WoTSF will return only one record per
building according to the aggregation function that is used during
the indexing process (e.g., maximum). When selecting STh-level,
the WoTSF calls WoTSE APIs in parallel after filtering WoT
networks using its high-level indices and ranks WoTSE results, as
shown in Figure 5 (c). In this case, WoTSF results are more fine-
grained. TheWoTSF prototype supports asking for first-k results
as well, to make the WoTSF stop after getting the first k results.

The WoTSF prototype implements auto suggestions, like Dyser,

for solving the problem of using structured queries [3].

4.4 Ranking
We define Sensor State SS(i) as the probability that a sensor is

in a certain state i (e.g., warm). SS(i) is evaluated as a constant
value, K, (e.g., 0.5) multiplied by 1 if the sensor is in the desired
state, i, and by 0 otherwise plus (1-K) multiplied by the probability
of being in state i. All possible states are indexed according to a
certain prediction model, whereby the probability value ranges from
zero to one. Thus, SS(i) is evaluated as follows:

����� � � ∗ 		����
 �1 � ��	�
�� (1)

where CS(i) is 1 if current state is i and 0 otherwise and
� is the
probability of being in state i. We define Entity State ES(i) as the
probability that an entity is in state i. Because the ES(i) may depend
on more than one sensor state, the ES(i) is measured as the average
of the corresponding sensors’ states, where all SThs are independent
and affect EoI state by the same degree such as follows:

����� � 	
�

�
	∑ ������

��� (2)

where n is the total number of sensors on which the entity state
depends, and ����� is the individual sensor states. The ranking

process is based on the entity state. An example of searching for a
quiet room consequently searches for a temperature sensor in a
warm state and for a loudness sensor in a low state. Suppose that
K=60%, if the indexed values about the temperature sensor indicate
that the current state is warm (i.e., CS(warm) = 1) but expected to
stay in warm with probability 0.3, then the sensor state SS(warm) =
(0.6 * 1) + (0.4* 0.3), which equals 72%. Assuming that the
loudness sensor has SS(low) = 85%, then using Eq. 2, the
probability of the room being in the quiet state is 78.5%.

But when sensor states affect ES(i) with different probabilities,
then ES(i) is evaluated such as follows:

����� � 	∑ ���� ∗ ������
��� (3)

where D(j) is the impact factor of sensor j in ES(i). Suppose that
probability of having a quiet room is evaluated by 70% * SS(low)
+ 30% * SS(warm), then using Eq. 3, the probability of the room
being in the quiet state is 81.1%.

5. EXPERIMENTAL EVALUATION
The framework evaluation was done on the integrated WoT

testbed [1]. The structured queries that Dyser (DSE) can answer
have two parts: static and dynamic. The WoTSF filters indices on
which search will be executed returning a ranked list of the
predicted EoIs that should be evaluated after that on the dynamic
part using one of the two search modes mentioned above.

WoTSF was evaluated on indices that are built using real
datasets and random synthesized values. When the user selects
‘Real’, a list of registered sensors in the WoT dataset appear, so that
the user can select a sensor type and limit the list of devices. When
the user selects ‘Random’, a sensor type should be selected and the
number of buildings (WoT networks) and number of devices in
each building should be determined. The WoTSF protoype
generates a random number of days of the week (0:7) for each
sensor, consequently each sensor has a random number of
quadruple records.

The main criteria of assessing the WoTSF are: (1) index size,
(2) processing time (i.e., time consumed for crawling, indexing,
searching, and ranking), and (3) result consistency and accuracy
(i.e., number of intended and accurate results).

Figure 6. WoTSF Evaluation: (a) DSE and WoTSF index sizes and processing times for different cases (stages) of number of

devices and buildings. (b) Comparison of index sizes (log-scale). (c) Processing time.

5.1 Index size
Figure 6 (a) shows the number of devices per building,

buildings, and index sizes of DSE and WoTSF (master index) at
different stages, whereby each stage has a different number of
buildings, devices per building, or both. The DSE index size is the
product of the number of buildings, the number of devices per
building, and the number of time units used in the prediction model
(7 days in the table). The WoTSF master index size is only the
product of the number of buildings and the number of time units, as
each building is summarized by one value for each time unit.
Figure 6 (b) shows that the index size of the WoTSF is less than the
index size of the DSE, and it also indicates that in case of a constant
number of WoT networks (e.g., buildings), increasing the number of
devices of the same type makes DSE index size increases, while the
WoTSF index does not change.

5.2 Processing time
WoTSF builds its master indices, depending on a server-root

file that directs the crawling process, by downloading and indexing
specific data about the WoT. That is, in WoTSF the STh pages are
not accessed but only the root file. As a result, the number of
recursive crawling processes was reduced as well as the time
consumed for parsing and indexing WoT pages. Dyser [3] [11]
implements an extensible service [20] for parsing multiple formats
(e.g., microdata) by which WoT networks data are written, which
consumes additional time.

The time consumed for searching in the WoTSF depends on
the search mode. The WoTSF gives the users the ability to select
between (1) searching in the high-level indices only to reduce
network overhead (speed search) and (2) using high-level indices
for filtering the search scope and selecting appropriate WoTSEs’
APIs that are called recursively (accurate results).

The chart shown in Figure 6 (c) shows the relation between
the processing time of DSE and WoTSF on the same query
(‘hotel, room:empty @Egypt-Cairo’) at the different stages listed
in Figure 6 (a). The time consumed by WoTSF was less than DSE
due to the smaller index size, the faster crawling, and most
significantly the use of the speed search mode in WoTSF. In stage
5, whereby the search results were limited to the first 100 results,
DSE stoped after getting 100 SThs that have probability>50%,
reducing the effect of network overhead and reducing the gap
between DSE and WoTSF.

5.3 Result accuracy
The WoTSF architecture increases the ability of keeping

indices up-to-date, whereby each WoTSE sends only aggregated
information to the master index. But, for the sake of measuring
result accuracy, we assume that both DSE and WoTSF have up-to-
date indices (but of different sizes as indicated in 5.1). Table 1
shows two buildings and the sensor state SS(occupied) in each

room. Table 2 indicates that when the WoTSF searched only in its
high-level indices, the result accuracy was less than DSE (2 vs.6 for
all results, 2 vs. 4 for first-4 results, and 2 vs. 3 for results with
probability>= 50%).

5.4 Summary
From Table 3, we argue that WoTSF benefits from the

distributed query processing and distributed indices [26], and the
idea of extensible discovery services [20] for parsing different
formats by leaving each WoTSE to parse the formats used in its
own network. Consequently, WoTSF reduces the time consumed
for crawling, parsing, and indexing.

Table 1. Each Building represents a single WoT network and

hosts an occupancy sensor in each room

Building

ID

Room ID:

Prob.

Building

ID

Room ID:

Prob.

100

101:0.8

200

201:0.3

102:0.4 202:0.5

103:0.7 203:0.4

Table 2. WoTSF and DSE search results (list of rooms)

according to different query types.

Search

Engine

Number of results: Correct number of results

all first-4 Probability >= 50%

WoTSF 2:6 2:4 2:3

DSE 6:6 4:4 3:3

Table 3. A qualitative comparison between WoTSF and DSE.

Criteria DSE WoTSF

Main Idea
uses Google SE in its
internal search process

works on top of
Dyser

Index Size one record per device
Nearly, one record
per WoT network

Granularity
of master

index
Device (STh) level

Network (e.g.,
building) level

Case:
Speed
Search

� All available results
� More time for

ranking.
� Accuracy of results

depends on indices
update.

� Results are top
values per WoT
network.

� Faster search
� Indices more up-to-

date

Case:
Accurate
Results

� Time: searching and
ranking time only.

� Indices: up-to-date
(based on
predictions).

� Accuracy: high

� Time: searching
and ranking time +
network overheads.

� Indices: up-to-date.
� Accuracy: high

Pros

� Less network
overheads.

� More accurate
results (returns all
matching results in
each WoT).

� Small and semi-
dynamic indices.

� Less time
consumed in
crawling, parsing,
indexing,
searching, and
ranking.

Cons

� Larger indices.
� Harder to keep

indices up-to-date.
� More time for

crawling, parsing,
indexing, searching,
and ranking.

� Tradeoff between
search speed and
result accuracy

6. CONCLUSION AND FUTURE WORK
Human users prefer searching for high-level states of SThs

and EoIs in real-time and in the future. We have proposed a
search framework, namely WoTSF, that runs on top of the Dyser
search engine [3] for speeding the search process, reducing index
size, and efficiently keeping indices up-to-date. In WoTSF,
individual distributed search engines (WoTSEs) handle the
indexing and crawling of their networks and present aggregate
information to the global search engine, whereas a master index

maintains summary information about the distributed search
engines. WoTSF reduces the time of the crawling process by
limiting it to per WoT-network instead of per device.

WoTSF has limitations. Because only aggregate information is
stored at the master index, WoTSF has to call appropriate WoTSEs’
APIs in parallel to retrieve fine-grained accurate results. This step
would increase the search time due to the network overhead.
Further performance analysis can be planned in the future to study
this matter to reduce the network overhead. Using semantic
technology will be helpful for interoperability. Dyser uses Google
for searching for the static part of the query; taking benefit of
integrating existing search engines is also a subject of future
work. The WoTSF expands the quadruple prediction of Dyser
according to the prediction model type. The prediction model type
limits the interval between subsequent page crawls (e.g., 7-days).
Scheduling the crawling processes to balance network overhead and
result accuracy is a subject of future work.

7. REFERENCES

[1] M. Younan, S. Khattab, and R. Bahgat, "An Integrated
Testbed Environment for the Web of Things," in The 11th
International Conference on Networking and Services (ICNS
2015), ISBN: 978-1-61208-404-6, Rome, Italy, May, 2015,
pp. 69-78.

[2] C. Pfister, "Getting Started with the Internet of Things," First
Edition ed., B. Jepson, Ed. United States of America.:
O’Reilly Media, Inc., May 2011.

[3] B. Ostermaier, K. Romery, F. Mattern, M. Fahrmairz, and W.
Kellererz, "A Real-Time Search Engine for the Web of
Things," in The 2nd IEEE International Conference on the
Internet of Things (IoT), Tokyo,Japan, November. 2010, pp.
1-8.

[4] D. Guinard and V. Trifa, "From the Internet of Things to
Web of Things," in MEAP - Building the Web of Things.
Manning, 2015, ch. 1, pp. 1-28.

[5] L. Mainetti, V. Mighali, and L. Patrono, "A Software
Architecture Enabling the Web of Things," IEEE Internet of
Things Journal, DOI: 10.1109/JIOT.2015.2477467, vol. 2,
no. 6, pp. 445-454, 2015.

[6] C. Truong, "Routing and Sensor Search in the Internet of
Things," PhD Thesis, Institute of Computer Engineering,
University of Lubeck, Hanoi, Vietnam, 2014.

[7] S. Mayer, D. Guinard, and V. Trifa, "Searching in a Web-
based Infrastructure for Smart Things," in the 3rd IEEE
International Conference on .,the Internet of Things (IoT
2012), , Wuxi, China, October 2012, pp. 119-126.

[8] B. Christophe, V. Verdot, and V. Toubiana, "Searching the
‘Web of Things’," in the 5th IEEE International Conference
on Semantic Computing (ICSC 2011), Stanford University,
Palo Alto, CA, USA, 2011, pp. 308-315.

[9] S. K. Datta and C. Bonnet, "Search engine based resource
discovery framework for Internet of Things," in the 4th IEEE
Global Conference on Consumer Electronics (GCCE 2015),
Osaka, Oct. 2015, pp. 83-85.

[10] A. Shemshadi,L. Yao, Y. Qin, Q. Z. Sheng, and Y. Zhang,
"ECS: A Framework for Diversified and Relevant Search in
the Internet of Things," in Web Information Systems
Engineering (WISE 2015), J. W. e. al., Ed. Springer
International Publishing Switzerland, 2015, ch. 30, pp. 448-
462.

[11] K. Römer, B. Ostermaier, F. Mattern, M. Fahrmair, and W.
Kellerer, "Real-Time Search for Real-World Entities: A
Survey," in Proceedings of the IEEE Vol. 98, No. 11,
SPECIAL ISSUE: Sensor Network Applications, ISSN:
0018-9219, Francisco, November 2010, pp. 1887-1902.

[12] D. Pfisterer, K. Romer, D. Bimschas, H. Hasemann, M.
Hauswirth, M. Karnstedt, O. Kleine, A. Kroller, M. Leggieri,
R. Mietz, M. Pagel, A. Passant, R. Richardson, and C.
Truong, "SPITFIRE: Towards a Semantic Web of Things,"
Communications Magazine, IEEE, vol. 49, no. 11, pp. 40-48,
Nov. 2011, http://dx.doi.org/10.1109/MCOM.2011.6069708.

[13] X. Jin, D. Zhang, Q. Zou, G. Ji, and X. Qian, "Where
Searching Will Go in Internet of Things?," in IEEE , 2011.

[14] M. Uddin, "Real-Time Search in Large Networks and
Clouds," KTH, School of Electrical Engineering Licentiate
Thesis ISBN 978-91-7501-879-9, ISSN 1653-5146,
September 2013.

[15] D. Guinard, "A Web of Things Application Architecture -
Integrating the Real-World into the Web," PhD Thesis,
Computer Science, Eidgenössische Technische Hochschule
ETH Zürich, Zürich, 2011.

[16] P. Suganthan G C, "AJAX Crawler," in Data Science &
Engineering (ICDSE), International Conference on. IEEE,
Cochin, Kerala, July 2012, pp. 27-30.

[17] (2015, Jan.) shodan search engine. [Online].
www.shodanhq.com

[18] A. Santanche, S. Nath, J. Liu, B. Priyantha, and F. Zhao,
"SenseWeb: Browsing the Physical World in Real Time," in
Demo Abstract, ACM/IEEE IPSN06, Nashville, TN, 2006,
pp. 1-2.

[19] umbrellium ltd. (2015, Oct.) Thingful. [Online].
https://thingful.net

[20] S. Mayer, D. Guinard, "An Extensible Discovery Service for
Smart Things," in Proceedings of the 2nd International
Workshop on the Web of Things (WoT 2011), ACM, San
Francisco, CA, USA, June, 2011, pp. 7-12.

[21] C. Zhang, T. Zhang, and M.Wang, "A Distributed Range
Query Framework for the Internet of Things," in the 18th
IEEE International Conference on Intelligence in Next
Generation Networks (ICIN 2015), ISBN 978-1-4799-1866-
9, Paris, France, February, 2015, pp. 83-88.

[22] C. Truong, K. Romer, and K. Chen, "Sensor Similarity
Search in the Web of Things," in World of Wireless, Mobile
and Multimedia Networks (WoWMoM), IEEE International
Symposium, San Francisco, CA, June 2012, pp. 1-6.

[23] M. Younan, S. Khattab, and R. Bahgat, "Evaluation of an
Integrated Testbed Environment for The Web of Things," in
International Journal On Advances in Intelligent Systems
(IntSys 2015), vol. 8, no. 3&4, pp. 467-482, Nov. 2015.

[24] Dr. M. Elkstein. (2014, Nov.) Learn REST: A Tutorial.
[Online]. http://rest.elkstein.org/2008/02/what-is-rest.html

[25] Google. (2010, Jan.) Search Engine Optimization (SEO) -
Starter Guide.

[26] M. Hammoud, D. A. Rabbou, R. Nouri, S. beheshti, and S.
Sakr, "DREAM: Distributed RDF Engine with Adaptive
Query Planner and Minimal Communication," in the 41st
International Conference on Very Large Data Bases, Kohala
Coast, Hawaii., 2015, pp. 1-12.

