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ABSTRACT 

A key challenge in the emerging Web of Things 
(WoT) paradigm is how the human users and 
machines look for meaningful and readable 
information in huge and dynamic datasets in real-
time, whereby the datasets are presented in different 
formats. This paper presents a technique to construct 
efficient, hierarchical web indices that are efficiently 
kept up-to-date. Also, a framework for searching in 
the WoT, namely WoTSF, is proposed and 
experimentally evaluated using a prototype. The 
proposed framework was shown to present a tradeoff 
between search speed and result accuracy as 
compared to the Dyser WoT search engine.  
 

CCS Concepts 

• Information systems~Web indexing    

• Computer systems organization~Sensor networks 

Keywords 

Internet of Things (IoT); Web of Things (WoT); Web Search; 
Web Indexing. 

1. INTRODUCTION 
Augmenting everyday objects (e.g., light bulbs, curtains, and 

appliances) with  embedded computers or visual markers 
allows  things and information about them to be accessible 
digitally (i.e., through the Web  or mobile phones). The augmented 
objects become internet's interface to the physical world [1] [2] 
[3]. In the Internet of Things (IoT), sensors and actuators that are 
connected to smart things (SThs) monitor and control their 
surrounding environment. They produce raw data about changes 
in states and events in the environment.  

The Web of things (WoT) [4] uses existing web tools to 
present IoT data in high-level states as final conclusions about 
objects and events. That is, WoT integrates sensors and actuators 
not only to the internet (network  layer) but also to the web 
(application layer) to provide users with an easy interface to 

present information about physical objects in a readable form [5].  
Searching for SThs and Entities of Interest (EoIs) is an essential 
service for almost all of the WoT applications [6]  [7] [8] [9] [10] 
because users of the WoT are more interested in high-level states 
especially about EoIs [3]. WoT search engines, such as Dyser [3] 
[11], crawl SThs and EoIs pages and build an index of all possible 
states and probabilities of those states in order to answer queries.  

The current trend in searching for SThs and EoIs in the WoT 
is to build loosely coupled systems [12], so that anyone can 
rebuild his own search engine for his own network [3]. But still, 
there is no general search engine for the IoT and the WoT [13] 
[14]. Many challenges face the WoT searching service in general 
[1]  [7]  [15]  [13]. Whereas a huge number of heterogeneous 
connected devices, there is no standardized naming for SThs’ 
attributes during the device registration process. Moreover, SThs 
have dynamic information, such as readings and locations of 
movable objects on which sensors and actuators are attached. 
Even some of the static STh information (e.g., logical path) is not 
considered as STh attributes although they are needed in the 
search process. For example, the Dyser WoT search engine [3] [8] 
needs to answers queries such as “find rooms at building X, 

occupancy:empty”. Because WoT pages host dynamic parts (i.e., 
pages parts are coded using AJAX), some search crawlers cannot 
crawl them [16]. Finally, STh state naming is not standardized.  

The main contribution of this paper is a technique to build a 
compact and accurate index and to efficiently keep it up-to-date. 
Many WoT networks contain similar types of sensors; for example, 
smart buildings that have an occupancy sensor in each room. Using 
a master index that indexes only the existence of an empty room in 
the building instead of indexing each sensor value reduces the index 
size and directs the fine-grained room search only into buildings 
that have empty rooms with high probability. 

This paper also presents a framework for  searching in the 
WoT (called WoTSF) that addresses the challenges mentioned 
above.  WoTSF builds high-level indices for each STh and EoI 
type in all WoT networks using a certain aggregation function (e.g., 
count or maximum). The master indices are created from local 
indices of distributed local search engines. A prototype of WoTSF 
was implemented and evaluated in comparison to Dyser [3] using 
three assessment criteria: index size, processing time and the 
accuracy of the results. 

The remainder of the paper is organized as follows. In 
Section 2, related work of search engines in the IoT and the WoT 
is presented. Section 3 describes the proposed WoTSF 
architecture. In Section 4, the implementation of WoTSF is 
described followed by experimental evaluation. Finally, 
conclusions and future work are presented in Section 6. 

2. RELATED WORK 
In this section, we spotlight the gap between current WoT 

search engines and the requirements of WoT search.  
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2.1 Real-time web search engines 
A web search engine, like Google, is an application for 

retrieving relevant information to a user query from the domain of 
the  World Wide Web (WWW) [14]. It matches the user query with 
static content of web pages that are crawled and  indexed in a 
distributed database. Indexing keywords of the crawled web pages 
is an essential component of the web search. Result ranking depends 
on keywords matching score.  In general, web search engines are 
document centric.  

Search engines of social networks, like Twitter and Facebook, 
are server centric. They update states of their users providing real-
time search for messages, comments and reviews, where users can 
search for messages, comments, etc., using keywords, and results 
are returned in real-time. Updates in user states are visible in real-
time to all users [3]. 

2.2 IoT and WoT search engines 
Searching the WoT is a special type of web search and 

network search [14]. Like web search, WoT search uses the static 
parts of the user query (e.g., find sensor of model X). Like network 
search, WoT search matches search queries against a dynamic 
information space. 

Dyser [3] [11] is a content-based search engine for the WoT. It 
works in a similar way to traditional search engines (e.g., Google), 
whereby the index of Dyser is built upon keywords, and users use 
simple and structured query language to search for entities. Dyser 
can search for SThs and EoIs in real-time. In Dyser, queries about 
states of SThs and EoIs are answered at the time of the query.  
Dyser does not index historical data; it indexes page keywords 
(static and quasi-dynamic information) and prediction models in 
order to predict future states of SThs and EoIs. Dyser searches for 
entities in two steps. First, it searches on Google for entity pages 
using a magic string. Second, it searches in its internal indices for 
entities that match static part of the query (i.e., the keywords). Like 
Dyser, we propose the WoTSF that contacts local WoT Search 
Engines (WoTSEs) that can answer specific parts of the query (sub-
queries), and then merges the results to be returned as a ranked list.   

Shodan [17] indexes website HTTP and FTP banners of 
devices (e.g., desktops, routers, and IP cameras) connected to the 
internet. It  helps users to find a specific device has a specific content 
in its banner. For example, ‘Server: SQ-WEBCAM’ searches for a 
web cam. Shodan is a keyword based search engine. It searches for 
devices not EoIs.  

SenseWeb [18] is a spatial search engine in the WoT for 
retrieving last-seen locations of SThs. Thingful [19] is a search 
engine for finding devices, datasets and real-time data sources by 
geo-location across many IoT networks. It has a unique 
geographical index of connected objects. Its query is split in two 
parts, what and where, to filter and speed up the search process. 

2.3 Searching in the WoT 
Christophe  et al. [8] discuss searching in the WoT focusing on 

two points: (1) requester (machine or user), to select the best search 
algorithm, and (2) type of results (e.g., searching for a similar object 
or getting certain decision depending on the states of different 
objects) benefiting from the semantic web. Implementing semantic 
web solves problems of non-standardized naming. Two scenarios 
are discussed for searching in private and public WoT, which 
stimulate the need for a general search engine for the WoT.  

Mayer  et al. [20] present DiscoWoT, an extensible discovery 
service for solving the problem of using multiple formats in WoT 
applications. The discovery service is based on multiple discovery 

strategies. Using this service, clients semantically identify SThs 
using their URL. This service could be implemented with the 
crawler of the WoT search engine.  

Mayer  et al. [7] propose a web-based infrastructure for the 
WoT in order to facilitate the integration of SThs and interaction of 
human users and other SThs (i.e., a look-up service). They identify 
four types of queries to search for SThs resources; in the case of 
dynamic integration of SThs, implementing ‘Request For Query 

(RFQ)’ enhances the search result. 
Zhang et al. [21] present a framework for a distributed range-

query search, which consists of three modules: (1) reporter, (2) 
indexer, and (3) query executor. The framework handles queries 
such as searching for sensors that read values in a range. Sensors 
send only abnormal readings to reduce the frequencies of data 
migration, and consequently reducing the frequency of updating the 
index of ranges. They focus on speeding up search for the special 
range queries, regardless if the search is implemented internally in a 
specific network or as a global search engine. The range-query 
framework proposed in [21] reduces the index size by reducing data 
migration between SThs. This query type is considered by our 
proposed WoTSF.  

Truong  et al. [6] [22] propose to search for sensor similarity 
and sensor content in the WoT. The sensor has three types of 
information: (1) static (e.g. sensor type), (2) quasi-dynamic (e.g., 
location), and (3) dynamic (e.g., measurement value). Similarity 
depends on STh types and historical data. But content-based search 
is another type of sensor queries for finding sensors whose values 
fall in a certain value range (similar to [21]).  

A case study for crawling the WoT has been discussed [23], 
whereby the search engine spiders crawl RESTful services [24] 
instead of dynamic parts (i.e., parts coded with AJAX) in STh  
pages following Google recommended optimizations [25]. The 
WoTSF uses datasets generated by the testbed in [1] for building 
local indices for individual WoTSEs, which are built based on the 
Dyser search engine [3]. Crawling WoT systems for building 
general indices is done similar to Google search engine, whereby 
WoT homepages host a server-root file to direct search engine 
spiders [25]. The WoTSF indexes and downloads this file 
containing the required information about the WoT. 

To sum up, most of above mentioned search systems support a 
keyword-based search, which will be difficult due to the challenges 
of WoT search. None of them discussed issues related to crawling 
and indexing data from different WoT networks. Using semantic 
web for enhancing search results is out of the scope of this paper but 
will be addressed in the future. 

3. THE WOTSF ARCHITECTURE 
Searching for high-level states is desirable for human users 

more than searching for raw sensory data [6]. Indeed, sensory data 
are huge and have a very short life-span [13] as sensors monitor 
daily life events. Users  are interested in current states based on the 
sensory data. Because IoT and WoT systems  are dynamic and 
real-time, the time that a search query takes before it returns the 
response to the user may be more than the time between state 
changes, leaving the query response stale and inaccurate. The 
solution in this case is to speed up the search process by filtering 
queries  using prediction models and keeping indices up-to-date by 
building distributed high-level indices for different types of 
queries. In what follows, we present motivating scenario and 
describe the architecture of the proposed WoT search framework, 
which aims at speeding up the search process. 



3.1 Motivating scenario 
Suppose that, there are three WoT networks that monitor 

three different smart hotels, where each WoT network has its own 
search engine. The first WoT network uses micro-format 
embedded in the EoIs pages, the second uses microdata, and the 
third implements AJAX for updating its pages in real-time, storing 
its data in RDF files. A user wants to search for a quiet and sun-lit 
room in the three hotels. The user searches each individual search 
engine and ranks the results. According to this scenario, there is a 
need to build a general search engine for the three systems, so that 
the user searches this global search engines instead of searching 
each local engine. 

3.2 Query processing 
The architecture of the WoTSF is shown in Figure 1. The 

main elements of the architecture are a global search engine 
(WoTSF) and one or more individual local search engines 
(WoTSEs). In this figure, m represents the index of a local search 
engine and s represents data storage in the WoT. The WoTSF 
crawls server-root files of the WoT networks and indexes general 
information about the WoT networks, such as URL of WoTSEs’ 
APIs, list of sensor types and all possible states, and high-level 
dynamic information using a certain aggregation function (e.g., 
average). WoTSF works as a middle-layer between the user and 
the WoTSEs, whereby each WoTSE works on its local indices 
that relate to a specific WoT network. When WoTSF receives a 
query, it analyzes it generating a list of sub-queries to be pushed 
into a filtered list of WoTSEs’ APIs, such as shown in  Figure 2 
(a).  Each individual WoTSE builds multiple-indicies (Figure 2 
(b,c)) to serve different queries quickly connecting them to 
SThs/EoIs datasets, such as shown in Figure 2 (d). Search results 
are ranked then returned to the query initiator (WoTSF user).  

3.3 Two-level index structure 
Building general indices for a massively increasing number 

of sensors requires the indices to be  updated at a potentially very 
high rate. Distributing the indices, whereby each WoTSE handles 
its own indices, reduces the frequencies of updates in the higher-
level indices. The hierarchical structure of indices is shown in 
Figure 3. The individual WoTSEs are located in WoT networks 

where datasets of sensors are located. For each STh the WoTSE 

gets the aggregation or summary of its readings for each unit of 

time (e.g., day, hour); the same thing is done for each EoI using 
previously calculated summaries of its SThs. The WoTSF 
calculates the aggregation for each building per EoI state. The 
WoTSF builds high-level indices about all WoT networks, called 
master indices or WoT-level indices, such as shown in Figure 1 
and Figure 2 (a). In smart buildings domain, master indices could 
be called building-level indices. Individual WoTSEs execute sub-
queries on their local indices, which are called secondary indices 
or STh-level indices.   

The idea of building high-level indices using aggregation 
functions on EoI states has the following benefits: (1) distributed 
queries and distributed indices [26], (2) up-to-date indices, and (3) 
scalability to different WoT systems. As a result of benefits 1 and 2, 
WoTSF makes a balance between search speed and accuracy of 

results. Search speed produces results in less time (i.e., saving in 
network overhead) by getting results from master indices only. 
Result accuracy depends on updates from the individual indices. 
However, the two-level index produces additional delay due to 
network overhead but saves time in crawling, parsing, and indexing. 
Instead of re-indexing the whole WoT, each local WoTSE re-
indexes only the new data either by applying the pull method (in the 
case of  periodic index updates) or using the push method [1] [3] 
[23] (whereby sensors send only abnormal changes keeping  top-k 
values up-to-date [21]. Keeping WoTSE indices using the pull 
approach decreases the complexity of data indexing and  increases 
data accuracy [3]. Updating data will be for a few number of 
devices that sense changes in their states.  

Figure 1. The architecture and query life-cycle in the proposed 

WoT Search Framework (WoTSF). 

Figure 2. Index structure and query processing in the WoTSF. 

Two levels of indices are used: master indices and SThs-level 

indices. 

Figure 3. Hierarchical structure of WoTSF and WoTSE indices 



To sum up, the proposed two-level index structure makes a 
balance between data analysis in the search process and data 
migration and communication in the indexing process [21] [26].  

4. WOTSF IMPLEMENTATION 
A prototype of the WoTSF framework was implemented 

using C# and Web Services Applications (WCF) for 
communication between components. The main processes of the 
search engine are: crawling, indexing, searching, and ranking. The 
implementation of these components is described in the following 
subsections. 

4.1 Crawling 
A flowchart of the sensor process life-cycle is shown in 

Figure 4 (a), where the sensor sends only abnormal readings to be 
indexed by its gateway (push method). Historical data are stored in 
a local database (datasets in Figure 2 (d)), where the database 
servers serve queries consisting of aggregation functions (e.g., 
average and count). The flowchart for handling an incoming 
message from a sensor holding abnormal data is shown in Figure 4 
(b). The gateway listens to its sensors and updates EoI states 
according to sensor values. If the number of records of the latest 
sensor values is greater than a threshold, the oldest value is replaced 
by the newest one; otherwise the gateway adds the sensor value to 
the list. Updating EoI prediction model depends on a number of 
consecutive state changes. Extracting the prediction model type 
(e.g., Single Period Prediction Model (SPPM) [3]) from the 
sensors’ historical readings is out of this paper’s scope. 

4.2 Indexing 
The WoTSF prototype produces indices like Dyser [3], a set of 

quadruple prediction records for each sensor in the time unit (e.g., 
7-Days). Because this prototype works on a dataset generated by 
the testbed in [23], sensors may produce different values (readings) 
or change their states frequently in less than a minute (i.e., each 
sensor has more than one reading in the same time unit (e.g., a 
day)). For simplicity, we use the kth percentile (e.g., 50th 
percentile) for representing each sensor by a single value in the 
time unit.  Resulting values were then used for generating 
prediction models in that time unit. For example, on Sunday a 
temperature sensor reads a set of values {5, 20, 21, 20, 20, 21, 23, 
20, 21, 23}, Suppose that the temperature sensor has three 
possible states ‘cold’, ‘warm’, and ‘hot’, following the rules {if 
(value≤18) then ‘cold', and if (18<value≤27) then ‘warm’, else 
‘hot’}. Using the 50th percentile, the sensor could be represented 
by the value 20, thus the temperature sensor on Sunday could be 
represented by the state ‘warm’ with probability ‘50%’.  

Like what is done with Dyser [3], we suppose that gateways 
(base-stations) in each WoT network generate prediction models 
from the historical data of their SThs and EoIs. Then, the search 
engine spider expands those models according to their periods. A 
general index similar to Dyser index (DSE index) for all WoT 
networks is shown in Figure 5 (a). On top of these quadruple 
prediction records, high-level indices are generated, such as shown 
in Figure 5 (b). An aggregation function is used for making a 
conclusion about a certain type of EoI states, for example the 
probability of having an empty room in a certain smart building.  In 
this implementation, the WoTSF prototype generates a general 
index for SThs of type ‘occupancy’ in WoT networks, where each 
WoT network has a number of SThs. WoTSF uses the aggregation 
function ‘maximum’ to index information about probability of 
having an empty room in each WoT network according to the 
prediction model type (7-Days). When multiple EoIs in one 
building  have the same aggregated value on one day, multiple 
records for the building are stored as shown in Figure 5 (b); 
otherwise, zero or one record is stored per day for each building.  

4.3 Searching 
WoTSF supports two modes for searching. In the case of speed 

search (searching in high-level indices), the WoTSF looks up its 
indices and ranks EoIs by their probabilities. But, in the case of 
accurate results, the WoTSF performs a deep search using 
WoTSEs’ APIs then ranks results according to sensor probabilities. 
The WoTSF filters buildings using the static part of the query 
(i.e., type of buildings and location) selecting the appropriate 
indices, then searches for the dynamic part. However, the search 
in WoTSF and in Dyser are different.  

For example, using Dyser, when the user selects a search 
criteria and probability>=50%, Dyser searches locally in its 

Figure 4. Flow charts for sensor and gateway process life-

cycle. (a) Sensor periodically sends changes in its readings to 

its gateway (b) gateway listens to its sensors and builds their 

prediction models. 

Figure 5. Search analysis: (a) searching on Dyser index (b) searching on Building-Level index (WoTSF) (c) WoTSF runs on 

Building-Level index and recursively calls appropriate WoTSEs’ APIs returning a ranked list of results. 



master index and returns a ranked list of direct STh URLs, which 
have probability >=50%, such as shown in Figure 5 (a). For 
WoTSF, the search process depends on the level of search, 
Building-level or STh-level. When the user sends the same query 
on Building-level, WoTSF first selects appropriate indices 
according to the static part of the query, then the WoTSF searches 
for buildings that score higher probabilities, and finally returns a 
list of results containing a variety of buildings, such as shown in 
Figure 5 (b). In other words, if a single building has more than 
one empty room, the WoTSF will return only one record per 
building according to the aggregation function that is used during 
the indexing process (e.g., maximum). When selecting STh-level, 
the WoTSF calls WoTSE APIs in parallel after filtering WoT 
networks using its high-level indices and ranks WoTSE results, as 
shown in Figure 5 (c). In this case, WoTSF results are more fine-
grained. TheWoTSF prototype supports asking for first-k results 
as well, to make the WoTSF stop after getting the first k results. 

The WoTSF prototype implements auto suggestions, like Dyser, 

for solving the problem of using structured queries [3].  

4.4 Ranking 
We define Sensor State SS(i) as the probability that a sensor is 

in a certain state i (e.g., warm). SS(i) is evaluated as a constant 
value, K, (e.g., 0.5) multiplied by 1 if the sensor is in the desired 
state, i, and by 0 otherwise plus (1-K) multiplied by the probability 
of being in state i. All possible states are indexed according to a 
certain prediction model, whereby the probability value ranges from 
zero to one. Thus, SS(i) is evaluated as follows: 

����� � � ∗ 		���� 
 �1 � ��	�
��                         (1) 

where CS(i) is 1 if current state is i and 0 otherwise and 
� is the 
probability of being in state i. We define Entity State ES(i) as the 
probability that an entity is in state i. Because the ES(i) may depend 
on more than one sensor state, the ES(i) is measured as the average 
of the corresponding sensors’ states, where all SThs are independent 
and affect EoI state by the same degree such as follows: 

����� � 	
�

�
	∑ ������

���                                       (2) 

where n is the total number of sensors on which the entity state 
depends, and ����� is the individual sensor states. The ranking 

process is based on the entity state. An example of searching for a 
quiet room consequently searches for a temperature sensor in a 
warm state and for a loudness sensor in a low state. Suppose that 
K=60%, if the indexed values about the temperature sensor indicate 
that the current state is warm (i.e., CS(warm) = 1) but expected to 
stay in warm with probability 0.3, then the sensor state SS(warm) = 
(0.6 * 1) + (0.4* 0.3), which equals 72%. Assuming that the 
loudness sensor has SS(low) = 85%, then using Eq. 2, the 
probability of the room being in the quiet state is 78.5%. 

But when sensor states affect ES(i) with different probabilities, 
then ES(i) is evaluated such as follows:  

����� � 	∑ ���� ∗ ������
���                             (3) 

where D(j) is the impact factor of sensor j in ES(i). Suppose that 
probability of having a quiet room is evaluated by 70% * SS(low) 
+ 30% * SS(warm), then using Eq. 3, the probability of the room 
being in the quiet state is 81.1%. 

5. EXPERIMENTAL EVALUATION 
The framework evaluation was done on the integrated WoT 

testbed [1]. The structured queries that Dyser (DSE) can answer 
have two parts: static and dynamic. The WoTSF filters indices on 
which search will be executed returning a ranked list of the 
predicted EoIs that should be evaluated after that on the dynamic 
part using one of the two search modes mentioned above.   

WoTSF was evaluated on indices that are built using real 
datasets and random synthesized values.  When the user selects 
‘Real’, a list of registered sensors in the WoT dataset appear, so that 
the user can select a sensor type and limit the list of devices. When 
the user selects ‘Random’, a sensor type should be selected and the 
number of buildings (WoT networks) and number of devices in 
each building should be determined. The WoTSF protoype 
generates a random number of days of the week (0:7) for each 
sensor, consequently each sensor has a random number of 
quadruple records. 

The main criteria of assessing the WoTSF are:  (1) index size, 
(2) processing time (i.e., time consumed for crawling, indexing, 
searching, and ranking), and (3) result consistency and accuracy 
(i.e., number of intended and accurate results).  

Figure 6. WoTSF Evaluation: (a) DSE and WoTSF index sizes and processing times for different cases (stages) of number of 

devices and buildings. (b) Comparison of index sizes (log-scale). (c) Processing time. 



5.1 Index size 
Figure 6 (a) shows the number of devices per building, 

buildings, and index sizes of DSE and WoTSF (master index) at 
different stages, whereby each stage has a different number of 
buildings, devices per building, or both. The DSE index size is the 
product of the number of buildings, the number of devices per 
building, and the number of time units used in the prediction model 
(7 days in the table). The WoTSF master index size is only the 
product of the number of buildings and the number of time units, as 
each building is summarized by one value for each time unit.  
Figure 6 (b) shows that the index size of the WoTSF is less than the 
index size of the DSE, and it also indicates that in case of a constant 
number of WoT networks (e.g., buildings), increasing the number of 
devices of the same type makes DSE index size increases, while the 
WoTSF index does not change.  

5.2 Processing time 
WoTSF builds its master indices, depending on a server-root 

file that directs the crawling process, by downloading and indexing 
specific data about the WoT. That is, in WoTSF the STh pages are 
not accessed but only the root file. As a result, the number of 
recursive crawling processes was reduced as well as the time 
consumed for parsing and indexing WoT pages. Dyser [3] [11] 
implements an extensible service [20] for parsing multiple formats 
(e.g., microdata) by which WoT networks data are written, which 
consumes additional time.  

The time consumed for searching in the WoTSF depends on 
the search mode. The WoTSF gives the users the ability to select 
between (1) searching in the high-level indices only to reduce 
network overhead (speed search) and (2) using high-level indices 
for filtering the search scope and selecting appropriate WoTSEs’ 
APIs that are called recursively (accurate results).  

The chart shown in Figure 6 (c) shows the relation between 
the processing time of DSE and WoTSF on the same query 
(‘hotel, room:empty @Egypt-Cairo’) at the different stages listed 
in Figure 6 (a). The time consumed by WoTSF was less than DSE 
due to the smaller index size, the faster crawling, and most 
significantly the use of the speed search mode in WoTSF. In stage 
5, whereby the search results were limited to the first 100 results, 
DSE stoped after getting 100 SThs that have probability>50%, 
reducing the effect of network overhead and reducing the gap 
between DSE and WoTSF.  

5.3 Result accuracy 
The WoTSF architecture increases the ability of keeping 

indices up-to-date, whereby each WoTSE sends only aggregated 
information to the master index. But, for the sake of measuring 
result accuracy, we assume that both DSE and WoTSF have up-to-
date indices (but of different sizes as indicated in 5.1). Table 1 
shows two buildings and the sensor state SS(occupied) in each 

room. Table 2 indicates that when the WoTSF searched only in its 
high-level indices, the result accuracy was less than DSE (2 vs.6 for 
all results, 2 vs. 4 for first-4 results, and 2 vs. 3 for results with 
probability>= 50%). 

5.4 Summary 
From Table 3, we argue that WoTSF benefits from the 

distributed query processing and distributed indices [26], and the 
idea of extensible discovery services [20] for parsing different 
formats by leaving each WoTSE to parse the formats used in its 
own network. Consequently, WoTSF reduces the time consumed 
for crawling, parsing, and indexing. 

Table 1. Each Building represents a single WoT network and 

hosts an occupancy sensor in each room 

Building 

ID 

Room ID: 

Prob. 

Building 

ID 

Room ID: 

Prob. 

100 

101:0.8 

200 

201:0.3 

102:0.4 202:0.5 

103:0.7 203:0.4 
 

Table 2. WoTSF and DSE search results (list of rooms) 

according to different query types. 

Search 

Engine 

Number of results: Correct number of results 

all first-4 Probability >= 50% 

WoTSF 2:6 2:4 2:3 

DSE 6:6 4:4 3:3 

Table 3. A qualitative comparison between WoTSF and DSE. 

Criteria DSE WoTSF  

Main Idea 
uses Google SE in its 
internal search process 

works on top of 
Dyser 

Index Size one record per device   
Nearly, one record 
per WoT network  

Granularity 
of master 

index 
Device (STh) level 

Network (e.g., 
building) level 

Case:  
Speed 
Search 

� All available results 
� More time for 

ranking. 
� Accuracy of results 

depends on indices 
update. 

� Results are top 
values per WoT 
network. 

� Faster search  
� Indices more up-to-

date 

Case: 
Accurate 
Results 

� Time: searching and 
ranking time only. 

� Indices: up-to-date 
(based on 
predictions). 

� Accuracy: high 

� Time: searching 
and ranking time + 
network overheads. 

� Indices: up-to-date. 
� Accuracy: high 

Pros 

� Less network 
overheads. 

� More accurate 
results (returns all 
matching results in 
each WoT).  

� Small and semi-
dynamic indices. 

� Less time 
consumed in 
crawling, parsing, 
indexing, 
searching, and 
ranking. 

Cons 

� Larger indices. 
� Harder to keep 

indices up-to-date. 
� More time for 

crawling, parsing, 
indexing, searching, 
and ranking. 

� Tradeoff between 
search speed and 
result accuracy  

 

6. CONCLUSION AND FUTURE WORK 
Human users prefer searching for high-level states of SThs 

and EoIs in real-time and in the future. We have proposed a 
search framework, namely WoTSF, that runs on top of the Dyser 
search engine [3] for speeding the search process, reducing index 
size, and efficiently keeping indices up-to-date. In WoTSF, 
individual distributed search engines (WoTSEs) handle the 
indexing and crawling of their networks and present aggregate 
information to the global search engine, whereas a master index 



maintains summary information about the distributed search 
engines. WoTSF reduces the time of the crawling process by 
limiting it to per WoT-network instead of per device.  

WoTSF has limitations. Because only aggregate information is 
stored at the master index, WoTSF has to call appropriate WoTSEs’ 
APIs in parallel to retrieve fine-grained accurate results. This step 
would increase the search time due to the network overhead. 
Further performance analysis can be planned in the future to study 
this matter to reduce the network overhead. Using semantic 
technology will be helpful for interoperability. Dyser uses Google 
for searching for the static part of the query; taking benefit of 
integrating existing search engines is also a subject of future 
work. The WoTSF expands the quadruple prediction of Dyser 
according to the prediction model type. The prediction model type 
limits the interval between subsequent page crawls (e.g., 7-days).  
Scheduling the crawling processes to balance network overhead and 
result accuracy is a subject of future work. 
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